A realistic understanding of their costs and risks is critical.

What are SMRs?

  1. SMRs are not more economical than large reactors.

  2. SMRs are not generally safer or more secure than large light-water reactors.

  3. SMRs will not reduce the problem of what to do with radioactive waste.

  4. SMRs cannot be counted on to provide reliable and resilient off-the-grid power for facilities, such as data centers, bitcoin mining, hydrogen or petrochemical production.

  5. SMRs do not use fuel more efficiently than large reactors.

[Edit: If people have links that contradict any the above, could you please share in the comment section?]

  • perestroika@slrpnk.net
    link
    fedilink
    arrow-up
    0
    ·
    edit-2
    9 months ago

    I think the EU Commission has done a fairly good job of listing the pros and contras of small modular reactors:

    https://energy.ec.europa.eu/topics/nuclear-energy/small-modular-reactors/small-modular-reactors-explained_en

    They have some advantages over conventional (large) reactors in the following areas:

    • if they are serially manufactured without design chances, manufacturing is more efficient than big unique projects
    • you can choose a site with less cooling water
    • you can choose a site where a fossil-burning plant used to be (grid elements for a power plant are present) but a renewable power plant may not be feasible
    • some of them can be safer, due to a higher ratio of coolant per fuel, and a lower need for active cooling*

    Explanation: even a shut down NPP needs cooling, but bigger ones need non-trivial amounts of energy, for example the 5700 MW plant in Zaporizhya in the middle of a war zone needs about 50 MW of power just to safely stay offline, which is why people have been fairly concerned about it. For comparison, a 300 MW micro-reactor brought to its lowest possible power level might be safe without external energy, or a minimal amount of external energy (which could be supplied by an off-the-shelf diesel generator available to every rescue department).

    The overview of the Commission mentions:

    SMRs have passive (inherent) safety systems, with a simpler design, a reactor core with lower core power and larger fractions of coolant. These altogether increase significantly the time allowed for operators to react in case of incidents or accidents.

    I don’t think they will offer economical advantages over renewable power. Some amont of SMRs might however be called for to have a long-term steerable component in the power grid.

  • Landsharkgun@midwest.social
    link
    fedilink
    English
    arrow-up
    0
    ·
    9 months ago

    None of these points are relevant. Nobody is selling SMRs as better than large-scale plants (at least I hope they’re not). The point of SMRs is that they are much easier to bring in and put down. A huge portion of the world still runs on fossil fuels, often with frequent brownouts or scheduled blackouts. Being able to bring in a RELIABLE non-fossil fuel power plant at a smaller scale would be huge. Distributed solar has some pretty awesome potential for individual households if you don’t care about on- demand power, but you do eventually need something for your denser cities etc.

  • Dippy@beehaw.org
    link
    fedilink
    arrow-up
    0
    ·
    edit-2
    9 months ago

    The economic advantage of SMRs is that when you make reactors in a location, the 1st is always more expensive than any following reactors. Just a reality of construction, permits, designs, etc. So if you have 4 reactors in one place, that’s pretty nice. They also have the advantage of being able to turn one off for maintenance and then having 2, 3, 4 other reactors in the same vicinity that can pick up the slack for the duration.

    As for waste, yeah it’s the same problem. But it’s important to note that the volume of material is not that big. The entire volume produced by all us nuke energy ever takes up a football field stacked 10 yards high. All told, that’s a smaller problem than I ever thought.

    I’m not a big nuclear advocate, I’m pretty mid on it. This is where I got all of the above information, an interview with the head of the US DOE loan program https://www.volts.wtf/p/nuclear-perhaps?amp%3Butm_medium=web

    • solo@kbin.earthOP
      link
      fedilink
      arrow-up
      0
      ·
      9 months ago

      Thank you for sharing this link. It was very interesting listening to someone from within the US that is head of an office now and started from Shell Solar.

      There is a reasoning that I didn’t get. Maybe I misunderstood something or I lack some information/knowledge. Anyways, here it is:

      At 1:02 they talks about nuclear waste saying that all the nuclear waste produced in the US by the nuclear power plants is like a football field that is 10 yards tall and then he talks about why this waste is not concerning.

      Later at 1:07 He mentions that the US is not reprocesing the uranium fuel rods, in which 95% of the energy is still there, and that the US should do reprocessing like other countries do.

      Doesn’t that mean that these unprocessed rods in the US that are in the “football field of nuclear waste” are therefore a concern?

      • Dippy@beehaw.org
        link
        fedilink
        arrow-up
        0
        ·
        9 months ago

        So energy remaining and radioactivity are separate. The isotope that it becomes has a decently long half life, but it might only be a few protons or neutrons away from something really radioactive.

        I do believe that the fuel rods count towards that pile of waste. I think the US has laws or rules that make it hard or impossible to recycle these back into the good stuff, but it’s very doable. France does it to a high degree.

  • solo@kbin.earthOP
    link
    fedilink
    arrow-up
    0
    ·
    9 months ago

    My personal stance is that sustainability cannot be achieved within capitalism due to its model of eternal growth. We can have one or the other, but not both.

    So creating more energy could not be the solution. Creating less demand would be, and the demand comes from industries.

    More often than not, I it seems to me this discussion about clean energy is a deflection of the real problem which is industrialisation under capitalism. We don’t question anymore what this energy is needed for.